Recognition of Handwritten Digits Using Multilayer Perceptrons

نویسندگان

  • Violeta Sandu
  • Florin Leon
چکیده

Neural networks are often used for pattern recognition. They prove to be a popular choice for OCR (Optical Character Recognition) systems, especially when dealing with the recognition of printed text. In this paper, multilayer perceptrons are used for the recognition of handwritten digits. The accuracy achieved proves that this application is a working prototype that can be further extended into a full handwritten text recognition system, addressing both digits and letters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Big Multilayer Perceptrons for Digit Recognition

The competitive MNIST handwritten digit recognition benchmark has a long history of broken records since 1998. The most recent advancement by others dates back 8 years (error rate 0.4%). Good old on-line back-propagation for plain multi-layer perceptrons yields a very low 0.35% error rate on the MNIST handwritten digits benchmark with a single MLP and 0.31% with a committee of seven MLP. All we...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Deep, Big, Simple Neural Nets for Handwritten Digit Recognition

Good old online backpropagation for plain multilayer perceptrons yields a very low 0.35% error rate on the MNIST handwritten digits benchmark. All we need to achieve this best result so far are many hidden layers, many neurons per layer, numerous deformed training images to avoid overfitting, and graphics cards to greatly speed up learning.

متن کامل

Persian handwritten digits recognition: A divide and conquer approach based on mixture of MLP experts

In pursuit of Persian handwritten digit recognition, many machine learning techniques have been utilized. Mixture of experts (MOE) is one of the most popular and interesting combining methods which has great potential to improve performance in machine learning. In MOE, during a competitive learning process, the gating networks supervise dividing input space between experts and experts obtain sp...

متن کامل

Recognition Offline Handwritten Hindi Digits Using Multilayer Perceptron Neural Networks

Handwritten Hindi digit recognition plays an important role in eastern Arab countries especially in the courtesy amounts of Arab bank checks. In this paper, we proposed an efficient offline handwritten Hindi digits recognition system and developed using Multilayer Perceptron Neural Network (MLP). The implemented system recognizes separated handwritten Hindi digits scanned using a scanner. The s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009